Automatic Segmentation of MS Lesions Using a Contextual Model for the MICCAI Grand Challenge

نویسندگان

  • Jonathan H. Morra
  • Zhuowen Tu
  • Arthur W. Toga
  • Paul M. Thompson
چکیده

Automatically segmenting subcortical structures in brain images has the potential to greatly accelerate drug trials and population studies of disease. Here we propose an automatic subcortical segmentation algorithm using the auto context model. Unlike many segmentation algorithms that separately compute a shape prior and an image appearance model, we develop a framework based on machine learning to learn a unified appearance and context model. In order to test the method, specificity and sensitivity measurements were obtained on a standardized dataset provided by the competition organizers. Our overall score of 77 seems to be competitive with others who’s overall score was in the range of 50 90.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

Automatic Brain Tissue Segmentation of Multi-sequence MR images using Random Decision Forests MICCAI Grand Challenge: MR Brain Image Segmentation 2013

This work is integrated in the MICCAI Grand Challenge: MR Brain Image Segmentation 2013. It aims for the automatic segmentation of brain into Cerebrospinal fluid (CSF), Gray matter (GM) and White matter (WM). The provided dataset contains patients with white matter lesions, which makes the segmentation task more challenging. The proposed algorithm uses multisequence MR images to extract meaning...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

BACKGROUND Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation i...

متن کامل

White Matter MS-Lesion Segmentation Using a Geometric Brain Model

Brain magnetic resonance imaging (MRI) in patients with Multiple Sclerosis (MS) shows regions of signal abnormalities, named plaques or lesions. The spatial lesion distribution plays a major role for MS diagnosis. In this paper we present a 3D MS-lesion segmentation method based on an adaptive geometric brain model. We model the topological properties of the lesions and brain tissues in order t...

متن کامل

Automatic Liver Segmentation from CT Scans Using Multi-layer Segmentation and Principal Component Analysis

This paper describes an automatic liver segmentation algorithm for extracting liver masks from CT scan volumes. The proposed method consists of two stages. In the first stage, a multi-layer segmentation scheme is utilized to generate 3D liver mask candidate hypotheses. In the second stage, a 3D liver model, based on the Principal Component Analysis, is created to verify and select the candidate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008